If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-38x=0
a = 7; b = -38; c = 0;
Δ = b2-4ac
Δ = -382-4·7·0
Δ = 1444
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1444}=38$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-38)-38}{2*7}=\frac{0}{14} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-38)+38}{2*7}=\frac{76}{14} =5+3/7 $
| 2/3n+8=18 | | 5y+6y-81=7y+65y | | 2x+3=x=5 | | 7x=2x÷30 | | 11b=2b | | 4a/2a=54-a | | -7(-2k+6)=-14+6k | | 12-4x+2x+1=-(4-10x)+12-4x | | z/15=2/3 | | (10x-3)÷10-(3x+3)=1÷10 | | 10-7a=-3 | | 5x-12+3x=180 | | 12y-3-(5-12y)=-(5-12y)-(8-8y) | | 12y-3-(5-12y)+3=4y-(5-12y)-(8-8y) | | 4x÷1=3x-1 | | 29+(x+5)=90 | | 3/5x19=0.6 | | 31x+17=8 | | X3+2x-1=0 | | 5x-3=-3(-x-1) | | 3x+25=7X-35 | | x-17/4=4 | | 7^x+7^x+1=56 | | 9y-12-2y=2 | | 476=28x | | (x+√-1)^2=-4√-1 | | x^2-7x=144 | | 1.73205080757*x=5 | | 40+y=× | | 5*9(f-32)=-19 | | 7.5x-7=1 | | -10/2=5/12x |